12 research outputs found

    Lessons from Building Acoustic Models with a Million Hours of Speech

    Full text link
    This is a report of our lessons learned building acoustic models from 1 Million hours of unlabeled speech, while labeled speech is restricted to 7,000 hours. We employ student/teacher training on unlabeled data, helping scale out target generation in comparison to confidence model based methods, which require a decoder and a confidence model. To optimize storage and to parallelize target generation, we store high valued logits from the teacher model. Introducing the notion of scheduled learning, we interleave learning on unlabeled and labeled data. To scale distributed training across a large number of GPUs, we use BMUF with 64 GPUs, while performing sequence training only on labeled data with gradient threshold compression SGD using 16 GPUs. Our experiments show that extremely large amounts of data are indeed useful; with little hyper-parameter tuning, we obtain relative WER improvements in the 10 to 20% range, with higher gains in noisier conditions.Comment: "Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    Max-Pooling Loss Training of Long Short-Term Memory Networks for Small-Footprint Keyword Spotting

    Full text link
    We propose a max-pooling based loss function for training Long Short-Term Memory (LSTM) networks for small-footprint keyword spotting (KWS), with low CPU, memory, and latency requirements. The max-pooling loss training can be further guided by initializing with a cross-entropy loss trained network. A posterior smoothing based evaluation approach is employed to measure keyword spotting performance. Our experimental results show that LSTM models trained using cross-entropy loss or max-pooling loss outperform a cross-entropy loss trained baseline feed-forward Deep Neural Network (DNN). In addition, max-pooling loss trained LSTM with randomly initialized network performs better compared to cross-entropy loss trained LSTM. Finally, the max-pooling loss trained LSTM initialized with a cross-entropy pre-trained network shows the best performance, which yields 67.6%67.6\% relative reduction compared to baseline feed-forward DNN in Area Under the Curve (AUC) measure

    Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations

    Full text link
    Load imbalance pervasively exists in distributed deep learning training systems, either caused by the inherent imbalance in learned tasks or by the system itself. Traditional synchronous Stochastic Gradient Descent (SGD) achieves good accuracy for a wide variety of tasks, but relies on global synchronization to accumulate the gradients at every training step. In this paper, we propose eager-SGD, which relaxes the global synchronization for decentralized accumulation. To implement eager-SGD, we propose to use two partial collectives: solo and majority. With solo allreduce, the faster processes contribute their gradients eagerly without waiting for the slower processes, whereas with majority allreduce, at least half of the participants must contribute gradients before continuing, all without using a central parameter server. We theoretically prove the convergence of the algorithms and describe the partial collectives in detail. Experimental results on load-imbalanced environments (CIFAR-10, ImageNet, and UCF101 datasets) show that eager-SGD achieves 1.27x speedup over the state-of-the-art synchronous SGD, without losing accuracy.Comment: Published in Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'20), pp. 45-61. 202

    SparCML: High-Performance Sparse Communication for Machine Learning

    Full text link
    Applying machine learning techniques to the quickly growing data in science and industry requires highly-scalable algorithms. Large datasets are most commonly processed "data parallel" distributed across many nodes. Each node's contribution to the overall gradient is summed using a global allreduce. This allreduce is the single communication and thus scalability bottleneck for most machine learning workloads. We observe that frequently, many gradient values are (close to) zero, leading to sparse of sparsifyable communications. To exploit this insight, we analyze, design, and implement a set of communication-efficient protocols for sparse input data, in conjunction with efficient machine learning algorithms which can leverage these primitives. Our communication protocols generalize standard collective operations, by allowing processes to contribute arbitrary sparse input data vectors. Our generic communication library, SparCML, extends MPI to support additional features, such as non-blocking (asynchronous) operations and low-precision data representations. As such, SparCML and its techniques will form the basis of future highly-scalable machine learning frameworks

    Generation and Minimization of Word Graphs in Continuous

    No full text
    in the forward and backward passes, it is guaranteed that the generated graph is the minimal word-lattice, containing exactly the paths that have a higher score than the threshold. This includes all the different alignments of each wordstring. For re-scoring using new acoustical models, the word-lattice constructed above is the optimal minimal representation because it is desirable to re-score the different alignments. However, for re-scoring using only a new grammar, a more compact representation is better. Minimizing a word-lattice is equivalent to minimizing a nondeterministic finite-state automaton (NFA) which is a hard problem that can not in general be solved in polynomial time. Therefore, the problem has been attacked using heuristic methods that reduce the graph but not to the minimal size. In particular, the so called word-pair approximation has been applied [6]. In this study we instead approached the problem by applying the classical algorithms for: 1) constructing an equi

    Multi-Geometry Spatial Acoustic Modeling for Distant Speech Recognition

    Full text link
    The use of spatial information with multiple microphones can improve far-field automatic speech recognition (ASR) accuracy. However, conventional microphone array techniques degrade speech enhancement performance when there is an array geometry mismatch between design and test conditions. Moreover, such speech enhancement techniques do not always yield ASR accuracy improvement due to the difference between speech enhancement and ASR optimization objectives. In this work, we propose to unify an acoustic model framework by optimizing spatial filtering and long short-term memory (LSTM) layers from multi-channel (MC) input. Our acoustic model subsumes beamformers with multiple types of array geometry. In contrast to deep clustering methods that treat a neural network as a black box tool, the network encoding the spatial filters can process streaming audio data in real time without the accumulation of target signal statistics. We demonstrate the effectiveness of such MC neural networks through ASR experiments on the real-world far-field data. We show that our two-channel acoustic model can on average reduce word error rates (WERs) by~13.4 and~12.7% compared to a single channel ASR system with the log-mel filter bank energy (LFBE) feature under the matched and mismatched microphone placement conditions, respectively. Our result also shows that our two-channel network achieves a relative WER reduction of over~7.0% compared to conventional beamforming with seven microphones overall.Comment: ICASSP2019, 5 pages. arXiv admin note: substantial text overlap with arXiv:1903.0529

    Frequency Domain Multi-channel Acoustic Modeling for Distant Speech Recognition

    Full text link
    Conventional far-field automatic speech recognition (ASR) systems typically employ microphone array techniques for speech enhancement in order to improve robustness against noise or reverberation. However, such speech enhancement techniques do not always yield ASR accuracy improvement because the optimization criterion for speech enhancement is not directly relevant to the ASR objective. In this work, we develop new acoustic modeling techniques that optimize spatial filtering and long short-term memory (LSTM) layers from multi-channel (MC) input based on an ASR criterion directly. In contrast to conventional methods, we incorporate array processing knowledge into the acoustic model. Moreover, we initialize the network with beamformers' coefficients. We investigate effects of such MC neural networks through ASR experiments on the real-world far-field data where users are interacting with an ASR system in uncontrolled acoustic environments. We show that our MC acoustic model can reduce a word error rate (WER) by~16.5\% compared to a single channel ASR system with the traditional log-mel filter bank energy (LFBE) feature on average. Our result also shows that our network with the spatial filtering layer on two-channel input achieves a relative WER reduction of~9.5\% compared to conventional beamforming with seven microphones.Comment: ICASSP 2019, 5 page
    corecore